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Abstract 

The goal of our research is to develop an effective and efficient clutter rejec- 
tor with the use of an eigenspace transformation and a multilayer percep- 
tion (MLP) that can be incorporated into an automatice target recognition 
(ATR) system. An eigenspace transformation is used for feature extraction 
and dimensionality reduction. The transformations considered in this re- 
search are principal component analysis (PCA) and the eignespace separa- 
tion transform (EST). We fed the result of the eigenspace transformation to 
an MLP that predicts the identity of the input, which is either a target or 
clutter. 

Our proposed clutter rejector was tested on two huge and realistic datasets 
of second generation forward-looking infrared (FLIR) imagery for the Co- 
manche helicopter. In general, both the PCA and EST methods performed 
satisfactorily with minor differences. The EST method performed slightly 
better when a smaller amount of transformed data were fed to the MLP, or 
when the positive and negative EST eigentargets were used together. 
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Executive Summary 

The operation of artilliary and other weapons on the battlefield is of- 
ten characterized by a series of detection, recognition, tracking, decision- 
making, and firing processess. Should a mistake occur during any of these 
activities, the results could be tragic and devastating. Although human op- 
erators are usually very good at detecting and recognizing different tar- 
gets in a range of environments, their performance can be drastically im- 
paired by poor visibility and prolonged operation. As a result, friendly and 
unintended targets may be accidentally destroyed. Such a tragedy is not 
uncommon in a military operation. It occurred during Operation Desert 
Storm in 1991 and has allegedly happened recently in the NATO bombing 
of Kosovo. Furthermore, certain hostile environments are either inaccessi- 
ble or too dangerous for human operators to work in. To compensate for 
such human limitations, an accurate and versatile automatic target recog- 
nition (ATR) system is needed. Before something is recognized as a hostile 
target by an ATR system, its presence and location, which are often over- 
shadowed by a host of distracting but unintended objects or clutter, must be 
accurately detected. Hence, an effective clutter rejection scheme is needed 
to single out the potential hostile target from the confusing clutter nearby. 

The goal of our research is to develop an effective and efficient clutter re- 
jector with the use of an eigenspace transformation and a multilayer per- 
ception (MLP). The input to the clutter rejector module is the region of 
interest (target chip) that is produced by a target detector module within 
the ATR system. An eigenspace transformation is used for feature extrac- 
tion and dimensionality reduction. The transformations considered in this 
research are principal component analysis (PCA) and the eignespace sep- 
aration transform (EST). These transformations differ in their capabilities 
to enhance the class separability and to extract compact features from a 
given training set. The result of the eigenspace transformation is then fed 
to an MLP that predicts the identity of the input, which is either a target or 
clutter. 

The proposed clutter rejector was tested on two huge and realistic datasets 
of second-generation forward-looking infrared (FLIR) imagery for the 
Comanche helicopter. These images were collected at different sites (Ft. 
Hunter-Ligget, CA; Yuma Proving Ground, AZ; and Camp Grayling, MI), 
during different months (January, February, June, and August), and at 



different times of day (day and night), and for different operational con- 
ditions of the target (hot and cold). In the first dataset, the target within 
each target chip was manually centered. The dataset consists of 10 mili- 
tary targets taken at various sites and viewing aspects. To train our clutter 
rejector, we used 10,397 signature (SIG) target chips taken with targets in 
the open, as well as 8,349 competitive clutter chips. For testing, we used 
3,456 challenging region-of-interest (ROI) target chips that were taken un- 
der poor environmental conditions, and 2,782 clutter chips. Choosing a 10 
percent false-alarm rate for our clutter rejector, we managed to detect 98.71 
and 92.30 percent of the targets in the first training and testing set, respec- 
tively. In the second dataset, the chips were automatically extracted from 
the ROI scenes by an automatic target detector. Many of these chips con- 
tained an off-center target. There were 4,627 target chips and 43,089 clutter 
chips in the second training set, while another 2,459 target chips and 18,070 
clutter chips were used for testing. The best detection rate acheived for the 
second dataset, controlled at a 10 percent false-alarm rate, was 83.27 and 
74.74 percent for the training and testing set, respectively. 

Based on the experiments on the first dataset, up to 6 percent of deteriora- 
tion in detection performance can be attributed to the noisier image quality 
of the ROI chips. Considering the coupled effect of unseen surprise of a typ- 
ical testing set, the noise factor is not overwhelming in this case. On the 
other hand, the effect of the off-center targets in the second dataset poses a 
more severe problem. The testing performance dropped from 92.30 to 74.74 
percent, mainly because of this factor. Therefore, a better target-centering 
algorithm should be developed for the precursory target detector. In gen- 
eral, both the PCA and EST methods performed satisfactorily with minor 
differences. The EST method performed slightly better when less trans- 
formed data were fed to the MLP, or when the positive and negative EST 
eigentargets were used together. 



1.   Introduction 

1.1   Background 

Human beings are usually very good at detecting and recognizing differ- 
ent targets even in relatively crowded and changing environments. How- 
ever, human performance deteriorates drastically in a low-visibility envi- 
ronment or after an extended period of surveillance. Furthermore, certain 
working environments are either inaccessible or too hazardous for human 
beings. To compensate for such human limitations, an accurate and versa- 
tile automatic target recognition (ATR) system is needed. For example, an 
ATR system in a battlefield might alert graveyard-shift sentries with accu- 
rate information about any approaching vehicle, so that they could respond 
quickly. 

Unfortunately, the development of such systems is hampered by the large 
number of target classes and aspects, long viewing ranges, obscured tar- 
gets, high-clutter backgrounds, different geographic and weather condi- 
tions, sensor noise, and variations caused by the translation, rotation, and 
scaling of the targets. The recognition problem is made even more challeng- 
ing [1,2] by inconsistencies in the signatures of the targets, similarities be- 
tween the signatures of different targets, limited training and testing data, 
camouflaged targets, the nonrepeatability of target signatures, and the de- 
ficiency in using any contextual information. 

The ATR learning environment in which the training data are collected also 
exerts a powerful influence on the design and performance of an ATR sys- 
tem. Dasarathy [3] described these environments in an increasing order of 
difficulty, namely, the supervised, imperfectly supervised, unfamiliar, vi- 
cissitudinous, unsupervised, and partially exposed environments. In this 
report, we assume that our training data come from an unfamiliar envi- 
ronment, where the labels of the training data might be unreliable to a 
level that is not a priori. For the experiments presented in this report, the 
input images were obtained by a second-generation forward-looking in- 
frared (FLIR) sensor. For these sensors, the signatures of the targets within 
the scene are severely affected by rain, fog, and foliage [2]. Clark et al [4] 
used an information theoretic approach to evaluate the information bound 
of FLIR images to estimate the best possible performance of any ATR algo- 
rithm that uses the given FLIR images as inputs. On the other hand, some 
FLIR enhancement techniques may be used to preprocess the FLIR input 



images. Lo [5] examined six of these techniques and found that a variable 
threshold zonal filtering technique performed most satisfactorily. 

Because of the high dimensionality of input images and the scarcity of 
training data, it is often necessary to reduce the data dimensionality by 
transforming the input data into a more compact feature space before the 
classification process. For instance, Lampinen and Oja [6] subdivided the 
recognition task into the feature extraction and classification stages. Us- 
ing a combination of Gabor filters and multilayer self-organizing maps 
(MSOMs), they mapped the original images to a feature space of reduced 
dimensionality and complexity. A smaller, supervised subspace network 
classifier was then used to perform the classification in this feature space. 
Besides the Gabor filter, the principal component analysis (PCA) [7] and the 
eigenspace separation transformation (EST) [8] are among the other tech- 
niques that have been used for dimensionality reduction in a target recog- 
nition task. 

A complete ATR system may consist of several algorithmic components, 
such as preprocessing, detection, segmentation, feature extraction, classi- 
fication, prioritization, tracking, and aimpoint selection [1]. Among these 
components, we are particularly interested in the detection-classification 
modules, which are shown in figure 1. The detection module is certainly 
one of the most important components, because the whole ATR system 
will not function properly without an excellent detector. Over the years, 
a number of detection algorithms have been proposed for ATR systems, 
such as the virtual agile retina target acquisition and classification (VAR- 
TAC) system proposed by Hecht-Nielsen and Zhou [9], the fusion of mor- 
phological wavelet transform (MWT) algorithm and Gabor basis function 
(GBF) detection algorithm proposed by Casasent and Neiberg [10], and the 
ATR relational template matching (ARTM) algorithm proposed by Kramer 
et al [11]. 

False alarms are a common problem for detection algorithms. As shown in 
figure 2, the boxed areas indicate the potential target that was detected by 
the ARTM algorithm; however, all but one of these are false alarms. Tech- 
niques for reducing false-alarm rates are usually part of the detection algo- 
rithm; an example is fusing the output from different detection algorithms, 
a technique described by Casasent and Neiberg [10]. 
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Figure 2. An FLIR image 
taken in a typical 
environment. Boxed areas 
indicate potential targets 
detected by ARTM 
algorithm. 

1.2   Research Objectives 

In a realistic FLIR scenario, such as the one depicted by figure 2, the sig- 
natures of certain confusing types of clutter can be very similar to those of 
a real target. If an automatic target detector has to detect most or all the 
real targets in the scene, an unacceptable number of false alarms may be 
produced at the same time. These false alarms could then bog down the 
performance of the subsequent target classifier in an ATR system. 

In this report, we propose a clutter rejector (CR) that effectively reduces 
the number of false alarms of an automatic target detector operating with 
the second-generation FLIR imagery. The inputs of this CR are the poten- 
tial target areas or target chips, similar to those identified with boxes in 
figure 2. Based on ground-truth information, these chips were labeled as 



either a target or clutter. The schematic diagram in figure 3 shows the two 
stages of our clutter rejector: a set of eigenvectors and a multilayer percep- 
tron (MLP). The eigenvectors or eigentargets, obtained through two differ- 
ent methods, perform feature extraction and dimensionality reduction by 
transforming the input image chips. The transformed input is then fed to 
the MLP, where the input is determined as either a target or clutter. 

In the next section of this report, we discuss the two eigenspace transforma- 
tions that we used to construct the eigentargets from the training images. 
Section 3 describes the neural clutter rejector, which uses the eigentargets 
as feature templates. Experimental results on two separate distributions of 
data are presented in section 4. We conclude this report with a brief discus- 
sion in section 5. 
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Figure 3. Proposed clutter rejector. 



2.   Eigentärgets 

In our experiments, we used two methods to obtain the eigentärgets from 
a given set of training images. Principal component analysis (PCA) is the 
most basic method, from which the more complicated eigenspace separa- 
tion transform (EST) method is derived. 

2.1   Principal Component Analysis 

Also referred to as the Hotelling transform or the discrete Karhunen-Loeve 
transform, PCA is based on statistical properties of vector representations. 
PCA is an important tool for image processing because it has several use- 
ful properties, such as decorrelation of data and compaction of information 
(energy) [12]. We provide here a summary of the basic theory of PCA. As- 
sume a population of random vectors of the form 

x = 

Xl 

X2 
(l) 

The mean vector and the covariance matrix of the vector population x are 
defined as 

mx = £{x} , and (2) 
= £{(x-mx)(x-mx)T}, (3) 

where E{arg} is the expected value of the argument, and T indicates vector 
transposition. Because x is n-dimensional, Cx is a matrix of order n x n. 
Element ca of Cx is the variance of xi (the ith component of the x vectors in 
the population), and element c%j of Cx is the covariance between elements 
xi and Xj of these vectors. The matrix Cx is real and symmetric. If elements 
Xi and Xj are uncorrelated, their covariance is zero and, therefore, Cy = Cji 
= 0. For N vector samples from a random population, the mean vector and 
covariance matrix can be approximated from the samples by 

N 

J2 xp , and (4) 
t»=i 

N 

5^(xpxJ - mxm£) . (5) 
p=i 

mx = 

Cx = 

1_ 
N 

1_ 
N 



Because Cx is real and symmetric, we can always find a set of n orthonor- 
mal eigenvectors for this covariance matrix. 

A simple but foolproof algorithm to find these orthonormal eigenvectors 
for all real symmetric matrices is the Jacobi method [13]. The Jacobi algo- 
rithm consists of a sequence of orthogonal similarity transformations. Each 
transformation is just a plane rotation designed to annihilate one of the off- 
diagonal matrix elements. Successive transformations undo previously set 
zeros, but the off-diagonal elements get smaller and smaller, until the ma- 
trix is effectively diagonal (to the precision of the computer). We obtain the 
eigenvectors by accumulating the product of transformations during the 
process, while the main diagonal elements of the final diagonal matrix are 
the eigenvalues. Alternatively, a more complicated method based on the 
QR algorithm for real Hessenberg matrices can be used [13]. This is a more 
general method because it can extract eigenvectors from a nonsymmetric 
real matrix. Furthermore, it becomes increasingly more efficient than the 
Jacobi method as the size of the matrix increases. Given the considerable 
increase in efficiency for the size of our covariance matrix, we chose the QR 
method for our experiments described in this report. Figure 4 shows the 
first 100 (out of the 800 possible in this case) most dominant PCA eigentar- 
gets representing the data in the training set. Because they have the largest 
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Figure 4. The 100 most dominant PCA eigentargets for targets in a training set. 
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eigenvalues, these eigentargets capture the greatest variance or energy as 
well as the most meaningful features among the training data. 

Let ej and Aj, i = 1, 2, ..., n, be the eigenvectors and the corresponding 
eigenvalues of Cx, sorted in a descending order so that Xj > AJ+i for j = 1, 
2,..., n-1. Let A be a matrix whose rows are formed from the eigenvectors 
of Cx, such that 

ei 

e2 
(6) 

This A matrix can be used as a transformation matrix that maps the x's into 
vectors denoted by y's, as follows: 

y = A(x - mx) . (7) 

The y vectors resulting from this transformation have a zero mean vector; 
that is, niy = 0. The covariance matrix of the y's can be computed from A 
and Cx by 

Cy = ACXAT . (8) 

Furthermore, Cy is a diagonal matrix whose elements along the main di- 
agonal are the eigenvalues of Cx; that is, 

(9) 

Because the off-diagonal elements of Cy are zero, the elements of the y 
vectors are uncorrelated. Since the elements along the main diagonal of a 
diagonal matrix are its eigenvalues, Cx and Cy have the same eigenval- 
ues and eigenvectors. In fact, the transformation of the Cx into Cy is the 
essence of the Jacobi algorithm described above. 

Therefore, through the PCA transformation, a new coordinate system is es- 
tablished. The origin of this new coordinate system is at the centroid of the 
population mx, with new axes in the direction specified by the eigenvec- 
tors {ei, e%,.. •, en}. The eigenvalue A; becomes the variance of component 
yi along eigenvector e,. With its ability to realign unknown data into a new 
coordinate system based on the principal axes of the data, PCA is often 
used to achieve rotational invariance in image processing tasks. 

'Ai 0 " 

A2 

cy = 

. 0 An . 



However, we may want to reconstruct vector x from vector y. Because the 
rows of A are orthonormal vectors, A-1 = AT. Therefore, any vector x can 
be reconstructed from its corresponding y by the relation 

x = ATy + mx . (10) 

Instead of using all the eigenvectors of Cx, we may pick only k eigenvec- 
tors corresponding to the k largest eigenvalues and form a new transfor- 
mation matrix Ak of order fcxn.In this case, the resulting y vectors would 
be ife-dimensional, and the reconstruction given in equation (10) would no 
longer be exact. The reconstructed vector using A^ is 

x = A^y + mx . (11) 

The mean square error (MSE) between x and x can be computed by the 
expression 

j=l j=l j=k+l 

Because the A/s decrease monotonically, equation (12) shows that we can 
minimize the error by selecting the k eigenvectors associated with the k 
largest eigenvalues. Thus, the PCA transform is optimal in the sense that it 
minimizes the MSE between the vectors x and their approximations x. 

2.2    Eigenspace Separation Transform 

The EST has been proposed by Torrieri as a preprocessor to a neural binary 
classifier [8]. The goal of the EST is to transform the input patterns into a set 
of projection values such that the size of a neural classifier is reduced and 
its generalization capability is increased. The size of the neural network is 
reduced because the EST projects an input pattern into an orthogonal sub- 
space of smaller dimensionality. The EST also tends to produce projections 
with different average lengths for different classes of input and, hence, im- 
proves the discriminability between the targets. In short, the EST preserves 
and enhances the classification information needed by the subsequent clas- 
sifier. It has been used in a mine-detection task with some success [14]. 

The transformation matrix S of the EST can be obtained as follows: 

1. Compute the n x n correlation difference matrix 

M = — £ xlpxfp - — £ x2,x£ , (13) 

where Ni and xip are the number of patterns and the pth training 
pattern of Class 1, respectively. iV2 and x2g are similarly related to 
Class 2 (which is the complement of Class 1). 

10 



2. Calculate the eigenvalues of M, {Aj | i = 1,2,..., n}. 

3. Calculate the sum of the positive eigenvalues 

£+ = £>       if   \i>0, (14) 

and the sum of the absolute values of the negative eigenvalues 

n 

£7_ = 53|Ai|       if   Ai<0. (15) 
i=l 

(a) If E+ > E-, then take all the k eigenvectors of M that have 
positive eigenvalues and form the n x k matrix S. 

(b) If E+ < E-, then take all the k eigenvectors of M that have 
negative eigenvalues and form the n x k matrix S. 

(c) If E+ = EL, then use either subset of eigenvectors to form the 
matrix S, preferably the smaller subset. 

Given the S transformation matrix, the projection yp of an input pattern 
xp is computed as yp = STxp. The yp, with a smaller dimension (because 
k < n) and presumably larger separability between the classes, can then be 
sent to a neural classifier. Figure 5 shows the eigenvectors associated with 
the positive and negative eigenvalues of the M matrix that were computed 
with the target chips as Class 1 and the clutter chips as Class 2. From the 
upper part of the figure, the signature of targets can be clearly seen. The 
lower part represents all the features of the clutter. 

As we can see from figures 4 and 5, only the first few scores of the eigentar- 
gets contain relatively consistent and structurally significant information 
pertaining to the training data. Yet these eigentargets clearly show a re- 
duction in informational content as their associated eigenvalues decrease. 
For those less meaningful eigentargets, say from the 50th all the way up 
to the 800th, only extremely low-intensity and high-frequency information 
may be present. In other words, by choosing k = 50 in equation (12) when 
n = 800, the resulting distortion error e would be very small and negligi- 
ble. While the distortion is negligible, there is a 16-fold reduction in input 
dimensionality and a similar level of compression in its information con- 
tent. This property is the essence of eigenspace transformations, and it is 
very critical to the subsequent satisfactory performance of the neural clut- 
ter rejector. 

11 
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3.   Clutter Rejection 

The inputs for our clutter rejection module are the image chips extracted 
from bigger scenes, as illustrated in figure 2. The size of these image chips 
is fixed to a predefined dimension, which is common to both the targets 
and the clutter. To reduce the background information in target chips, we 
clip each image chip at a size that equals the dimension of the largest target 
in our training set. After the background removal, the input image is scaled 
to a preferred size based on a linear interpolation technique. This scaling is 
needed to achieve an image size that is efficient for feature extraction via 
the eigenspace transformation, while an effective amount of information is 
retained in the image. 

After normalizing the clipped and scaled training data, we compute the 
eigentargets using either PCA or the EST. We treat each image pixel as a 
dimension of the data vector in these computations. The resulting eigen- 
targets are sorted in descending order based on the norm of their corre- 
sponding eigenvalues. Characterized by their eigenvalues, different sub- 
sets of these eigentargets may be used as feature extractors in different 
experiments. To achieve feature extraction and dimensionality reduction, 
we project the preprocessed input image to a chosen set of k eigentargets. 
The resulting k projection values are fed to an MLP, where they are nonlin- 
early combined. 

A typical MLP used in our experiments is shown in figure 6. The MLP 
has k + 1 input nodes (with an extra bias input), several layers of hidden 
nodes, and one output node. In addition to full connections between con- 
secutive layers, there are also shortcut connections directly from one layer 
to all other layers, which may speed up the learning process. The MLP is 
trained to perform a two-class problem, with training output values of ±1. 
Its sole task is to decide whether a given input pattern is a target (indicated 
by a high output value of around +1) or clutter (indicated by a low out- 
put value of around -1). The MLP is trained in batch mode by a modified 
Qprop algorithm [17] for a quick but stable learning course. 

If the number of target chips and clutter chips is quite different in the train- 
ing set, a trained MLP tends to predict the class that has more training 
samples. This negative effect of an imbalanced training set has been studied 
by Anand et al [18]. To avoid creating such a biased network, we add a cor- 
rective measure in our modified learning algorithm. Because the training is 

13 



Figure 6. A simple MLP 
with two layers of weights 
and shortcut connections. 
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carried out in batch mode [19], the error gradient ^ obtained for each net- 
work parameter or weight for a given training pattern can be accumulated 
separately, depending on the type of intended outputs for that training pat- 
tern. At the end of a training epoch, the average value of the error gradient 
when the training output is high (low), eh (el), for a weight i is computed 
as 

,        1   ^ dE% ,       1   ^ dEl 
Nh £j dwi Ni^dwi' 

where Nh and Nt are the number of occurrences of high and low training 
outputs, respectively. If e\ and e\ have the same sign or direction, then their 
average is used to update the corresponding weight i. Otherwise, no up- 
date is made to the controversial weight. This corrective scheme allows the 
output errors incurred by both high and low target outputs to be reduced 
simultaneously. 

To maximize the class separation between the targets and clutter, we focus 
only on the training patterns that are easily confused or wrongly classified 
at a predefined false-alarm rate. Only the errors incurred by these confus- 
ing patterns are used to update the MLP weights, so that these patterns may 
be classified correctly later. A less confusing pattern may be considered 
only during the early stage of training. This technique of focused learning 
improves the target recognition rate drastically for a given false-alarm rate. 

14 



4.    Experimental Results 

To examine the performance of our clutter rejection technique, we imple- 
ment a difficult two-class problem. The input images are 10-bit gray-scale 
FLIR image chips of both targets and clutter. Similar to the white boxes in 
figure 2, these chips were extracted with a size of 40 x 75 pixels from the 
original image frames. We use two separate distributions of chips, which 
differ in the way they were extracted. The first distribution of chips was 
extracted manually based on ground-truth information. The silhouette of a 
target or clutter is manually centered in each of these chips in most cases, 
hence, they are relatively easier to recognize. On the other hand, the chips 
in the second distribution were extracted automatically by a neural auto- 
matic target detector (developed at the U.S. Army Research Laboratory 
(ARL) by Sandor Der and Christopher Dwan). The detected location, in- 
stead of the ground-truth location, of a detected target was used to extract 
a target chip. Since the detected target center is not necessarily the ground- 
truth center of the target, a lot of target chips in this distribution end up 
with an off-center target silhouette inside the chip. Similarly, no manual 
adjustment was made in the extraction of clutter chips in this distribution. 
Needless to say, these chips are much harder to learn and recognize. Sepa- 
rate experiments were conducted with both distributions of chips, and the 
results are presented in the following subsections. 

4.1   Manually Produced Chips 

For the manually produced and silhouette-centered distribution, we have 
image chips of 10 targets taken at various sites and viewing aspects. Among 
the target chips, we have a training set of 10,397 SIG (signature) image 
chips taken with targets in the open. For testing, we use 3,456 challenging 
ROI (region-of-interest) image chips that were taken under less favorable 
conditions, such as having targets in and around clutter, in different back- 
grounds, and under various weather conditions. Typical examples of the 
SIG and ROI images are shown in figure 7. We have 8,349 and 2,782 clut- 
ter image chips for the training and testing purposes, respectively. These 
clutter images were manually extracted from the same scenery where the 
SIG and ROI data were obtained. Randomly selected examples of the clut- 
ter chips are shown in figure 8. Clearly, some of the clutter images are very 
similar to the targets in the ROI dataset. 
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Figure 7. Examples of SIG 
images (top two rows) and 
ROI images (bottom row) ■>• 
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Figure 8. Examples of 
clutter images for training 
(top row) and testing 
(bottom row). 

Considering the size of the targets and the computational complexity of 
the QR algorithm (which is roughly proportional to the cube of the image 
size), we scale the input image to a moderate size of 40 x 20 pixels. Us- 
ing the target chips in the training set, we obtained the corresponding PCA 
eigentargets as shown in figure 4. Meanwhile, the positive and negative 
EST eigentargets shown in figure 5 were generated based on both the tar- 
get and the clutter chips in the training set, in which they form the Class 
1 and Class 2 data in equation (13), respectively. We plot the sorted eigen- 
values associated with the resulting PCA and positive EST eigentargets, 
as shown in figure 9. The plots clearly show that the eigenvalues diminish 
rapidly for both the PCA and EST methods, while those of the EST decrease 
even faster. In other words, the EST may produce a higher compaction in 
contextual information. Furthermore, the eigenvalues approach zero after 
about the fortieth eigentarget. Therefore, we were interested in the 40 most 
dominant eigentargets only, instead of all 800 eigentargets available. 

Theoretically, the more eigentargets employed in the transformation, the 
larger the amount of information that should be preserved in the trans- 
formed data. However, more transformed inputs may quadruple the com- 
plexity of the MLP, prolong the training cycle, and increase the chance of 
getting stuck in a nonoptimal solution. To find the balance between the 
asymptotically  increased  information  content and  the  likelihood  of 
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Figure 9. Rapid 
attenuation of eigenvalues 
inPCAandEST 
eigentargets. 
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obtaining a timely and pseudo-optimal solution, we tried in turn to use the 
1, 5,10, 20, 30, and 40 most dominant eigentargets of each transformation 
to produce the projection values for the MLR In each attempt, five indepen- 
dent training processes were tried with different initial random weights for 
the MLR The runs were performed at a controlled false-alarm rate of 10 
percent. The best performance of each run and the average recognition rate 
for the five runs are given in tables 1 and 2. 

In general, the average recognition rate increases with the number of eigen- 
targets used for feature extraction, but approaches saturation at 30 or more 
projection values. When fewer projection values are used, significantly 
higher performance is achieved by the EST. This improvement can be at- 
tributed to the better compaction of information associated with EST. How- 
ever, the testing performance of EST dropped at 40 inputs, which suggests 
that over-fitted networks may have been created. Furthermore, the slightly 
lower recognition rates achieved by EST with 20 or more inputs indicate 
that some minor information might have been lost in this transformation. 

4.2   Detector-Produced Chips 

We also examined the performance of the proposed CR in the situation 
where the input chips are both noisy and off-center. In the following exper- 
iments, we used the second distribution of image chips, in which the chips 
were automatically extracted from the challenging ROI image frames by 
the ARL neural target detector developed by Der and Dwan. In addition 
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Table 1. Performance of 
PCA method on manually 
produced chips with 
various number of MLP 
inputs. The false-alarm 
rate was set at 10 percent. 

Table 2. Performance of 
EST method on manually 
produced chips with 
various number of MLP 
inputs. The false-alarm 
rate was set at 10 percent. 

Number Data 
type 

Hit rates (%) and average for five runs 

of inputs 1 2 3 4 5 Average 

Train 67.85 67.85 67.85 67.85 67.85 67.85 
1 

Test 55.01 55.01 55.01 55.01 55.01 55.01 

Train 88.61 87.88 85.93 87.75 87.91 87.62 
5 

Test 83.42 82.52 80.01 83.62 81.80 82.27 

Train 96.23 95.96 92.29 93.47 96.33 94.85 
10 

Test 90.13 89.67 86.28 86.81 90.39 88.66 

Train 97.82 98.25 97.34 97.76 97.32 97.70 
20 

Test 90.08 92.56 89.58 91.15 91.78 91.03 

Train 97.97 98.43 97.89 98.67 98.02 98.20 
30 

Test 91.09 91.15 90.25 91.90 91.17 91.11 

40 
Train 99.01 98.72 98.55 98.95 98.32 98.71a 

Test 93.40 90.71 92.82 92.33 92.25 92.30a 

"Bold numbers show discrepency between the perf ormance of the best CR. 

Number Data 
type 

Hit rates (%) and average for five runs 

of inputs 1 2 3 4 5 Average 

Train 74.35 74.35 74.35 74.35 74.35 74.35 
1 

Test 65.86 65.86 65.86 65.86 65.86 65.86 

Train 92.68 91.27 92.21 92.11 92.74 92.20 
5 

Test 88.66 87.18 87.99 87.33 88.89 88.01 

Train 96.19 95.67 96.60 96.55 96.26 96.25a 

10 
Test 92.36 91.98 92.51 91.52 92.16 92.11° 

20 
Train 96.02 96.62 96.14 96.19 94.23 95.84 

Test 90.62 90.74 89.29 91.09 87.76 89.90 

Train 97.16 96.71 95.05 97.86 94.71 96.30 
30 

Test 91.72 89.87 88.48 91.12 87.27 89.69 

Train 94.99 94.98 99.30 97.21 95.84 96.46 
40 

Test 86.69 86.89 92.74 90.51 88.02 88.97 

"Bold numbers show discrepency between the performance of the best CR. 

to the noisy nature of these chips, none of them was manually centered 
during the extraction process. There were only five target types in the ROI 
database, as identified in the bottom row of figure 7. As shown in table 3, 
there were 47,716 training image chips in this distribution, in which 4,627 
were target chips and 43,089 clutter chips. In the testing set, there were 
2,459 target chips and 18,070 clutter chips. The testing set and 29,053 chips 

18 



Table 3. Number of ROI 
images in second 
distribution of chips. 

Data type Data Target Clutter Total 

Training huli9306 1,049 28,004 29,053 

yuma9202 1,695 10,600 12,295 

gray9201 1,883 4,485 6,368 

Subtotal 4,627 43,089 47,716 

Testing huli9204 2,459 18,070 20,529 

of the training set were taken from the same site, but in a different month 
and year. Randomly selected examples of the target and clutter chips are 
shown in figure 10. Obviously, some target silhouettes are off-center inside 
the chip, and the signatures of some clutter chips are very similar to those 
of the target chips. 

Once again, we scaled the input image to a moderate size of 40 x 20 pixels 
and generated the PCA and EST eigentargets with this training set. Fig- 
ure 11 shows the first 50 most dominant PCA eigentargets derived from 
the target chips (top 5 rows) and clutter (bottom 5 rows) in the detector- 
produced training set. Compared to figure 4, the features of targets are far 
less obvious in the top 5 rows of figure 11. Undoubtedly, this is due to the 
effect of the noisy and off-center target silhouettes in this training set. A 
similar effect can be observed in the EST eigentargets as well, as shown in 
figure 12. 

As with the manually produced chips, we used the 1, 5,10, 20, 30, and 40 
most dominant eigentargets of each transformation to produce the projec- 
tion values for the MLR Similarly, five independent training processes were 
tried and the performance reported. These results, which were performed 
at a controlled false-alarm rate of 10 percent, are shown in tables 4 and 
5 for the PCA and EST methods, respectively. The performance pattern is 
quite similar to that expressed in tables 1 and 2, except the detection rates 
are significantly lower with the detector-produced data. Clearly, the noisy 
and off-center target silhouettes have created a much tougher learning and 
recognition task. 

Figure 10. Examples of target chips (top row) and clutter chips (bottom row) in detector-produced image chips. 
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Figure 11. First 50 most dominant PC A eigentargets for targets (top five rows) and clutter (bottom five rows) in detector- 
produced training set. 
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Figure 12. First 50 most dominant EST eigentargets associated with positive (top five rows) and negative (bottom five 
rows) eigenvalues for detector-produced training set. 
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Table 4. Performance of 
PCA method on the 
detector-produced dataset 
with various number of 
MLP inputs. The 
false-alarm rate was set at 
10 percent. 

Table 5. Performance of 
EST method on the 
detector-produced dataset 
with various number of 
MLP inputs. The 
false-alarm rate was set at 
10 percent. 

Number Data 
type 

Hit rates (%) and average for five runs 

of inputs 1 2 3 4 5 Average 

Train 22.24 22.24 22.24 22.24 22.24 22.24 
1 

Test 28.10 28.10 28.10 28.10 28.10 28.10 

Train 38.19 38.60 38.60 38.86 37.28 38.31 
5 

Test 45.18 45.47 45.67 45.42 43.07 44.96 

Train 64.58 63.11 62.05 64.53 63.43 63.54 
10 

Test 64.70 63.40 62.95 66.21 65.51 64.56 

Train 74.43 76.14 78.56 73.48 76.64 75.85 
20 

Test 70.60 71.00 71.78 70.84 73.24 71.49 

Train 78.78 82.08 78.71 80.72 83.60 80.78a 

30 
Test 71.94 73.20 71.86 76.01 73.89 73.38° 

Train 81.63 84.37 79.60 85.20 79.90 82.14 
40 

Test 73.69 73.12 69.83 74.79 71.66 72.62 

"Bold numbers show discripency between the performance of the best CR. 

Number Data 
type 

Hit rates (%) and average for five runs 

of inputs 1 2 3 4 5 Average 

Train 30.56 30.56 30.56 30.56 30.56 30.56 
1 

Test 30.83 30.83 30.83 30.83 30.83 30.83 

Train 49.88 50.96 49.54 49.43 50.44 50.05 
5 

Test 52.34 53.64 52.22 52.58 53.31 52.81 

Train 66.95 65.23 64.69 67.71 66.50 66.22 
10 

Test 65.64 63.97 65.23 67.55 64.95 65.47 

Train 76.90 75.75 76.72 75.15 76.44 76.19 
20 

Test 72.92 72.10 74.18 72.67 71.78 72.73 

Train 79.27 79.77 76.31 77.39 77.31 78.01a 

30 
Test 74.14 74.38 73.04 70.80 71.86 72.84° 

Train 74.69 70.41 79.71 75.92 71.28 74.40 
40 

Test 66.25 66.73 72.79 65.72 64.70 67.23 

"Bold numbers show discripency between the performance of the best CR. 

Instead of using only the target PCA and positive EST eigentargets (the top 
five rows of figures 11 and 12), we also examined the usefulness of clut- 
ter PCA and negative EST eigentargets (the bottom five rows of figures 11 
and 12). We formed each MLP input pattern by cascading an equal number 
of projection values produced by the target (positive) and clutter (negative) 
eigentargets of the PCA (EST). Taking 5 to 30 projections from each side, we 
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constructed the corresponding MLPs with 10 to 60 inputs. The runs were 
performed at a controlled false-alarm rate of 10 percent. The best perfor- 
mance of each run and the average recognition rate for the five runs are 
given in tables 6 and 7. 

Based on tables 4 and 6, the clutter PCA eigentargets could improve the hit 
rates when the number of MLP inputs is small. With 30 or more projections 
from the target eigentargets, however, the benefit of clutter eigentargets 
has completely vanished. On the other hand, as shown in tables 5 and 7, 
the negative EST eigentargets seem to be useful even for the MLPs with 
60 inputs. Indeed, the MLPs trained with 30 positive and 30 negative EST 
projections have achieved the best average performance for the detector- 
produced dataset. It is possible that the orthonormal relationship between 
the positive and the negative EST eigentargets has captured more unique 
and less redundant information in the training data; hence, it enables the 
subsequent MLP to learn and perform more optimally. 

Table 6. Performance of 
PCA method on the 
detector-produced dataset 
with equal number of 
target and clutter 
eigentargets. The 
false-alarm rate was set at 
10 percent. 

Number Data 
type 

Hit rates (%) and average for five runs 

of inputs 1 2 3 4 5 Average 

Train 64.58 62.57 63.84 63.97 64.15 63.82 
10 

Test 66.90 61.77 63.68 65.39 64.25 64.40 

Train 73.81 73.50 73.68 74.30 70.74 73.21 
20 

Test 73.57 72.55 72.39 72.10 70.64 72.25 

Train 75.30 76.94 77.65 76.79 70.09 75.35 
30 

Test 73.12 73.93 74.26 74.79 68.85 72.99 

Train 76.08 80.61 80.16 77.91 78.97 78.75 
40 

Test 73.65 76.25 74.30 73.57 71.94 73.94 

Train 76.01 74.13 84.03 83.90 82.65 80.14a 

50 
Test 72.75 69.66 76.49 75.15 74.50 73.71a 

Train 83.66 81.87 82.82 75.36 77.09 80.16 
60 

Test 78.00 74.34 74.54 69.46 69.58 73.18 

*Bold numbers show discripency between the performance of the best CR. 
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Table 7. Performance of 
EST method on the 
detector-produced dataset 
with equal number of 
positive and negative 
eigentargets. The 
false-alarm rate was set at 
10 percent. 

Number Data 
type 

Hit rates (%) and average for five runs 

of inputs 1 2 3 4 5 Average 

Train 66.48 69.01 68.64 66.20 69.38 67.94 
10 

Test 66.73 70.88 71.61 69.05 69.95 69.64 

Train 76.59 80.46 77.52 77.89 78.13 78.12 
20 

Test 74.14 74.14 72.88 76.62 76.66 74.89 

Train 79.06 81.72 82.43 81.05 82.84 81.42 
30 

Test 74.75 75.03 76.62 75.48 77.35 75.85 

Train 79.08 86.64 86.28 81.33 81.05 82.88 
40 

Test 72.18 77.47 77.63 73.49 71.82 74.52 

Train 83.99 78.47 84.46 83.99 82.49 82.67 
50 

Test 73.44 70.84 74.83 73.44 74.66 73.44 

Train 80.42 84.50 82.80 85.80 82.82 83.27° 
60 

Test 71.13 77.23 75.84 75.68 73.81 74.74° 

"Bold numbers show discripency between the performance of the best CR. 
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5.    Conclusions 

In this report, we have described a clutter rejection technique that is based 
on eigenspace transformation and an MLP classifier. The proposed CR is 
tested with a wide range of realistic FLIR images, in which as many as 10 
military targets were viewed from 72 different aspects at several proving 
grounds and under various meteorological conditions. From the experi- 
mental results, a few conclusions can be drawn here. 

Based on the performance given in tables 1 and 2, we may say that the effect 
of noisy testing data is significant but not overwhelming. Due to the factor 
of unseen surprise, the performance of the testing set is usually lower than 
that of the training set, even when both the training and testing data were 
collected under the same conditions. From tables 1 and 2, the discrepancy 
between the training and testing performance of the best CR (which are 
highlighted with bold typeface) is about 4 to 6 percent. Therefore, the effect 
of noise introduced by the degraded ROI images should be equal or less 
than 6 percent, which is not too bad. 

The effect of off-center silhouettes, on the other hand, has more severe im- 
pacts on the performance of the CR. For instance, the best performance in 
table 4 is about 16 to 19 percent lower than the corresponding training and 
testing performance achieved in table 1. This difference can be attributed 
mainly to the off-center characteristic of the chips, but not to the fact that 
the ROI (instead of the SIG) images were used as the training set in the case 
of table 4. Because the experimental results documented in our previous 
technical report [20] showed that when the manually centered ROI chips 
were included in the training set, they were able to improve the recogni- 
tion rate of the ROI chips in the testing data from 75.1 to 91.0 percent. In 
other words, learning to recognize the ROI testing chips based on an ROI 
training set alone should not have incurred the 16 to 19 percent drop in per- 
formance here. To address this problem, therefore, we need an automatic 
target detector that can detect the target center more accurately. 

Despite the small differences, both the PCA and EST methods have per- 
formed satisfactorily in our experiments. Although it is simpler than the 
EST, the PCA method seems to perform better as a CR when 20 or more 
projection values are fed to the corresponding MLP Nonetheless, the EST 
proves to be a better transformation when only a small number of projec- 
tion values can be processed, because of speed or memory constraints. Fur- 
thermore, the best performance can be achieved when both positive and 
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negative EST eigentargets are used simultaneously. Using both the target 
and clutter PCA eigentargets at the same time, on the other hand, does not 
pose any improvement over having the target PCA eigentargets alone. 

Using a dynamically selected active training set to update the MLP weights 
has been shown to be an effective scheme. By focusing mainly on the train- 
ing patterns around the region of confusion, the MLP has learned the deli- 
cate boundary between the target and clutter more successfully. In our ini- 
tial experiments, we have noticed an improvement of up to 20 percent in 
recognition rate due to this dynamic pattern selection process. 
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